Recall 1

Process, modifications and indistinguishability

- 1. Let E be a subspace of a finite-dimensional normed vector space. We denote the Borel σ -algebra on E by $\mathcal{B}(E)$. What is an E-valued stochastic process?
- 2. What is a measurable process?
- 3. When do two *E*-valued processes X and Y have the same \mathbb{P} -finite-dimensional distribution? When are they \mathbb{P} -modifications of each other? When are they \mathbb{P} -indistinguishable?

Processes and filtrations

- 1. What are the left- and right-continuous limits \mathcal{F}_{t-} and \mathcal{F}_{t+} of a given filtration $\mathbb{F} := (\mathcal{F}_t)_{t \geq 0}$?
- 2. What is an \mathbb{F} -adapted process?
- 3. Let X be an E-valued process and \mathbb{F} be a filtration on $(\Omega, \mathcal{F}, \mathbb{P})$. What does it mean that X is \mathbb{F} -progressively measurable?
- 4. What are the usual conditions for a filtration $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$?
- 5. What is the usual \mathbb{P} -augmentation $\mathbb{F}^{\mathbb{P}^+} := (\mathcal{F}_t^{\mathbb{P}^+})_{t \ge 0}$ for a filtration $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$?

Processes and stopping times

- 1. What is a random time? What is an F-stopping time? What is an F-optional time?
- 2. Let G be a subset of E, what is the first hitting time of G for X? What it is the début of X in G? What is the first approach time of G for X?
- 3. Can you state some properties of stopping times?

Predictable and optional process

- 1. What is an \mathbb{F} -predictable stochastic process?
- 2. What is an \mathbb{F} -optional stochastic process?
- 3. Can you give one example for each of them?

Localisation

- 1. Let \mathcal{X} be a family of processes. What is the localised class of \mathcal{X} , written $\mathcal{X}_{loc}(\mathbb{F},\mathbb{P})$?
- 2. When is a class of processes \mathcal{X} said to be \mathbb{F} -stable?
- 3. What does it mean that an *E*-valued process X is (\mathbb{F}, \mathbb{P}) -locally bounded?
- 4. What does it mean that an *E*-valued process X is (\mathbb{F}, \mathbb{P}) -locally integrable?

Specific convergence modes for stochastic processes

- 1. Can you state the uniform convergence in probability?
- 2. Can you show that the space of càdlàg \mathbb{F} -adapted processes is complete under the \mathbb{P} -ucp convergence?

The Émery topology

1. What does it mean that a sequence of càdlàg and \mathbb{F} -adapted processes $(X^n)_{n \in \mathbb{N}}$ converges to 0 under the (\mathbb{F}, \mathbb{P}) -Émery topology?